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Abstract. We show theoretically that the low-temperature mobility and conductance of thin
double quantum wires formed from coupled double quantum wells can be enhanced by orders
of magnitude by an applied magnetic field of a few tesla. This enhancement is caused by
quenching of the intrawire back scattering which occurs when the Fermi level falls within the
partial energy gap. The gap is created by the anticrossing of the energy dispersion curves of
two quantum wires which are displaced relative to each other by the field.

Electron transport in quasi-one-dimensional (1D) quantum-well wires (QWWs) has received
increasing attention recently [1–5]. The original interest in QWWs was conceived in search
of high-mobility device structures for the possibility that the restricted phase space in 1D
may reduce the momentum dissipation rate and increase the mobility [1]. In a 1D wire
sufficiently thin that only the lowest 1D sublevel is occupied, momentum is dissipated
through back scattering between two Fermi points at low temperatures (T ). We propose
a novel mechanism which enhances the low-T mobility by orders of magnitude through
quenching of the back scattering in the restricted 1D phase space. This enhancement
is achieved in thin tunnel-coupled double quantum-well wires (DQWWs) by applying a
magnetic field (B) in the growth plane (i.e., perpendicular to the plane containing both wires)
in a direction (‖x) perpendicular to the two parallel QWWs. The dramatic and sharplyB-
dependent enhancement effect may eventually be useful for future device applications (e.g.,
magnetic switching), since it provides a technique for greatly increasing conductance.

The Hamiltonian is given in the effective mass approximation by

H = p2
z/2m∗ + (

h̄2/2m∗)(k − z/l2
)2 + V (z) (1)

where the confinement potentialV (z) is the superposition of the square-well potentialsV1(z)

and V2(z) of QW1 and QW2. For simplicity, the QWs are assumed to be identical with
well-widths b, depthsV , and centre-to-centre distanced. We assume that the diameter of
the QWWs is smaller than the classical magnetic lengthl = (h̄c/eB)1/2 in the range ofB
of interest. The interest of this paper is in the limit where only the ground sublevels are
populated. The total eigenfunction is given by9(x, y, z) = ϕ(x)L−1/2 exp(−iky)ψ(z, k)

where L is the length of the wire (‖y) (assumed to be much shorter than the 1D weak
localization length),ϕ(x) is the confinement function in the direction of the field, and
ψ(z, k) is the eigenfunction of (1) in the growth direction (‖z).

Although some important properties of the eigenfunctions of (1) were discussed earlier
by the present author [6], it is necessary to equip the readers with some of their basic
properties to elucidate the theory. The eigenfunctionsψ(z, k) are obtained by employing
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tight-binding basis functionsφ1(z) and φ2(z), which are the ground sublevel confinement
functions of QW1 and QW2 alone. The energy eigenvaluesεk and the density of states
(DOS) are displayed in figure 1 as solid curves at three magnetic fieldsB = 0, 4.8, and
6.0 T for a symmetric GaAs/Al0.3Ga0.7As DQWW structure withm∗ = 0.067m0 in the QWs
(m0 is the free-electron mass),m∗ = 0.073 m0 in the barriers,b = 8 nm, d = 14 nm, and
the well depthsV0 = 280 meV. The black dots at the tips of the double-sided arrows denote
the Fermi points and the dotted horizontal lines in the DOS figures signify the position of
the chemical potential (µ) for the 1D electron densityN1D = 6.5 × 105 cm−1. While only
symmetric DQWWs are discussed and studied numerically in this paper, a similar argument
can be extended to an asymmetric structure with minor changes. Our formal result for the
conductance is, however, applicable to a general situation.

A useful intuitive understanding of the eigenvalues and eigenfunctions is gained by
initially turning off the tunnelling between the QWs: the unperturbed in-plane eigenvalues

Figure 1. The energy eigenvalues (solid curves) and the DOS. The dashed curves are the
unperturbed parabolas. The arrows indicate back scattering between the Fermi points (black
dots). Dotted lines in the DOS figures indicate the chemical potentials. The +,− signs signify
the signs of the slopes at the Fermi points.
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in QW1 and QW2 are indicated by the dashed parabolas in figure 1. The bottoms of these
parabolas rise in energy with increasingB due to the diamagnetic shift. AtB = 0 T, the two
parabolas coincide. This degeneracy is removed byB at all k except at the crossing point
at k = 0, as the two parabolas are shifted relative to each other by the amount1k = dl−2

as can be seen readily from (1). When the tunnelling is turned on, the degeneracy atk = 0
is removed and a gap is opened as shown by the solid curves.

At B = 0, the two solid parabolas represent symmetric–antisymmetric splitting with
energy 1SAS = 0.8 meV. The DOS is proportional toε−1/2 + (ε − 1SAS)

−1/2. The
wave functions are given byψ(z, k) = [φ1(z) ± φ2(z)]/[2(1 ± S)]1/2 for all k. Here
S = 〈φ1(z)|φ2(z)〉 is the overlap integral. In the symmetric case discussed here, the wave
functions have equal probability distribution on each QW. For the purpose of a later analysis,
numbers 1 and 2 are assigned in figure 1 to the Fermi points, according to the original
positions of these points on the unperturbed parabolas atB > 0. The signs +,− following
the numbers indicate the signs of the slopes (i.e., the group velocities).

The crossing point of the two dashed parabolas rises in energy with increasingB. The
gap rises at the same time and passes throughµ as shown in figure 1. The gap energy is
insensitive toB. It is important to point out here that, at highB with µ below the gap (e.g.,
at B = 6 T in figure 1),ψ(z, k) approaches asymptotically the unperturbed confinement
functionsφ1(z) and φ2(z) at the Fermi points 1± and 2±, respectively. Similarly, when
µ is within the gap (e.g., atB = 4.8 T), ψ(z, k) is φ1(z)-like at the Fermi point 1− and
φ2(z)-like at 2+ as seen by the fact that the solid dispersion curve coincides with the dashed
parabola of QW1 at 1− and with that of QW2 at 2+. The origin of this spatial separation
of the forward-moving and backward-moving electrons in the gap is the Lorentz force.

We now introduce a qualitative discussion of the quenching mechanism of the intrawire
scattering and the accompanying giant mobility enhancement, before carrying out a formal
analysis. Whenµ is outside the gap (e.g., atB = 0 and 6 T infigure 1), the dominant back
scattering occurs within the wire. Because of the wide barrier, only a minor contribution
occurs from interwire scattering. In contrast, whenµ is inside the gap (e.g., atB = 4.8 T),
back scattering occurs predominantly through the barrier, because the wave functions at
the Fermi points 1− and 2+ are separated into QW1 and QW2, respectively, as discussed
already. The spatial separation of the wave functions for 1− and 2+ produces a greatly
reduced probability of scattering. As a result, the scattering rate drops abruptly as the upper
gap edge sweeps across the Fermi level, yielding a large mobility enhancement. This kind
of drastic quenching of intrawire scattering is unique to the 1D structure, due to its limited
phase space with only two Fermi points. By contrast, in two-dimensional (2D) double QWs,
electrons can move freely within the extra degree of freedom in thex-direction. The Fermi
surface then consists of a 2D orbit inside the gap. Scattering can occur between any two
points of this 2D orbit and is not necessarily 180◦ back scattering, yielding no such dramatic
effect inside the gap [6–8]. When more than one 1D sublevel is occupied, the enhancement
arises from quenching of the back scattering between one pair of in-gap Fermi points of a
sublevel and will be greatly reduced, because intrawire back scattering is still available for
other Fermi points of other occupied sublevels which are outside the gap.

The conductance is given, ignoring spin splitting, by

G(B) = 2e2

L2

∑
k

νk

[−f ′(εk

)]
gk (2)

whereνk = dεk/h̄ dk is the group velocity,e is the electronic charge, andf ′(x) is the first
derivative of the Fermi function. In (2), the mean free pathgk = νkτk (τk is the transport
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relaxation time) is obtained from the Boltzmann equation:

νk + 2πNimpL

h̄

∑
k′

V
(
k, k′)2(

gk′ − gk

)
δ
(
εk − εk′

) = 0 (3)

whereNimp is the 1D impurity density andV (k, k′)2 is the square of the absolute value
of the scattering matrix element averaged over the impurity distribution. Thek- and k′-
summations in (2) and (3) include both branches of the eigenvalues. The effect of spin
splitting will be discussed later.

At low T , the k- and k′-summations in (2) and (3) become discrete sums over four
Fermi points whenµ is outside the gap and two Fermi points when it is inside the gap.
The conductance in (2) is then simplified to

G(B) = e2g/(πhL) (4)

whereg is the sum of mean free pathsgki
over all the Fermi pointski . The Boltzmann

equation in (3) can also be rewritten as coupled equations of mean free pathsgk on the
discrete Fermi points. The quantityg is given in units ofh̄2/(L2Nimp) by

g = u−1
1−,2+ (two Fermi points)

= F/D (four Fermi points)
(5)

whereui,j = uj,i = V (ki, kj )
2/|v(ki)v(kj )|, v(k) = vk, andki , kj are wave numbers at the

Fermi points. The quantityF is given by

F = (
u1−,2+ + u1+,2+

)(
u1−,2+ + u1+,2−

) + (
u1−,1+ + u2−,2+

)
×(

u1−,2− + u1−,2+ + u1+,2− + u1+,2+
) + 4u1−,2−u1+,2+ (6)

andD is the determinant of a 3× 3 matrix:

D =
∣∣∣∣∣ u1−,1+ + u1−,2− + u1−,2+ u1−,2+ −u1−,2−

u1−,2+ u1−,2+ + u2−,2+ + u1+,2+ u2−,2+
−u1−,2− u2−,2+ u1−,2− + u1+,2− + u2−,2+

∣∣∣∣∣ .
(7)

The subscripts 1± and 2± in (5)–(7) indicatek at the Fermi points designated by these
symbols in figure 1.

In order to demonstrate the conductance enhancement, we calculateG(B) for the sample
studied in figure 1 using (4)–(7) for short-range delta-function-potential scattering centres
(designated by black dots) uniformly distributed along the wires on two of the interfaces of
the QWs as illustrated in the inset of figure 2. This example is relevant to high-mobility
QWWs where surface roughness scattering is dominant [4]. Discussions of the effect of
other elastic and inelastic scattering will be given later. The total number of scattering
centres is the same in the four cases studied in figure 2. The fractional numbers in the
inset therein indicate the fractional distribution of the scattering centres. The conductance is
inversely proportional to|〈ϕ(x)|c(x)|ϕ(x)〉|2 wherec(x) denotes the impurity distribution in
theB-direction on the interfaces. Information on the scattering strength and the confinement
function ϕ(x) is not necessary because we are interested only in the relative conductance.
The zero-B conductances for the four cases are approximately equal with less than 1%
differences owing to the fact that the zero-B wave functions are shared equally between the
two QWs.

The conductance enhancement (≡G(B)/G(0)) between 4.4 and 5.2 T is shown in
figure 2 for the four cases and is striking. This gigantic enhancement is due to the quenching
of intrawire back scattering whenµ is within the gap as discussed above. The enhancement
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Figure 2. Conductance enhancementG(B)/G(0) againstB for 8–6–8 nm DQWWs. The inset
shows four configurations of scattering centres. Other parameters are given in the text. Note
that the vertical axis is split with two different scales.

G(B)/G(0) is nearly equal outside the gap in cases sy1, sy2, and asy1. In these cases,
G(B) decreases monotonically with increasingB until it vanishes at the upper gap edge,
where it jumps abruptly, reaches a maximum, and then drops again abruptly to zero at the
lower gap edge. The conductance then increases monotonically, eventually saturating at the
value corresponding to the conductance of the two uncoupled QWWs. However, our 1D
model breaks down at very highB where l < b (e.g., B > 10.3 T in figure 3). In this
case, the electrons are still confined in thex-direction and execute 2D cyclotron motion in
they–z-plane inside each QW, undergoing scattering and tunnelling at the interfaces of the
wells. The vanishing ofG(B) at the gap edges is due to divergent scattering rates caused
by the diverging DOS (in the absence of damping).

Spin splitting causes displacement of both the energy-dispersion curves and the gaps
(figure 1) by the Zeeman splitting for the two spin states. In this case,µ first falls, with
increasingB, into the gap of the higher-energy spin states, then into that of the lower-energy
spin states, and finally exits the gaps. Neglecting spin-flip scattering, the current is carried
by two independent noninteracting parallel channels. When the spin splitting is neglected,
the quantityG(B)/G(0) in figure 2 is the superposition of the two identical contributions
(i.e., half of G(B)/G(0) shown in figure 2) from each spin channel. In the presence of
spin splitting, however, the turn-on and turn-off magnetic fields for the giant enhancement
peaks are displaced for the two spin channels. As a result, the full enhancement peaks and
return to the baseline value shown in figure 2 are achieved in two approximately equal steps
if µ falls into the energy gap of the second spin states before exiting that of the first spin
states (i.e., for large gap energy). Ifµ falls into the energy gap of the second spin states
after exiting that of the first spin states (i.e., for small gap energy), the two enhancement
peaks from the two spin channels (which are about half of those shown in figure 2) do not
overlap.

The conductance behaves very differently in case asy2: it rises initially to a maximum
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Figure 3. Conductance enhancementG(B)/G(0) againstB for 8–7–8 nm DQWWs with a
wider barrier than in figure 2 for the asy1 distribution of the scattering centres in the inset of
figure 2. The numbers above each peak denoteN1D in units of 105 cm−1. The inset shows
G(0) (in arbitrary units) againstN1D .

value before it starts aB-dependent behaviour similar to that in the above three cases. This
initial rise is due to the resistance resonance between QW1 and QW2 with unequal zero-B

mobilities [9]. At B = 0, the rough interface of QW1 (with 90% of the total roughness)
reduces the mobility of QW2 becauseψ(z, k) is shared equally between the two channels.
As B is increased, the wave functions begin to separate into QW1 and QW2 so that the
said roughness scatters the electrons in QW2 much less. Therefore, the mobility of QW2
with only 10% of the total roughness becomes much larger than that of QW1, resulting
in a larger flow of the current through QW2 and yielding largerG(B). An extreme limit
of this behaviour is reached at very highB, where QW1 and QW2 become uncoupled at
the Fermi level, yielding a saturationG(B) significantly larger thanG(0) as seen from the
dash–dotted curve in figure 2.

The different peak heights in the four cases in figure 2 can also be understood from the
spatial separation of the wave functions inside the gap into QW1 and QW2. The scattering
rate proportional to|〈ψ(z, k1−)|V |ψ(z, k2+)〉|2 ∼ |〈φ1(z)|V |φ2(z)〉|2 is the smallest in case
sy1, because the scattering centres on the left interface of QW1 (right interface of QW2)
are farthest from the wave functionφ2(z) (φ1(z)), yielding the largest enhancement (solid
curve). Applying a similar logic, case sy2 yields the smallest enhancement (dashed curve).
The asymmetric cases asy1 and asy2 belong to intermediate situations and may be more
relevant to real samples, where surface roughness is known to be more severe in growing
from an AlGaAs region into a GaAs region (from left to right in the inset of figure 2). The
large enhancement shown by the dash–dotted curve corresponds to case asy2 where 90%
of the interface roughness is on the left interface of QW1. In this case, the said roughness,
being very far from QW2, is ineffective for back scattering through the barrier.

The enhancement can further be increased by increasing the barrier width as
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demonstrated in figure 3. Here, the sample is identical to that used for figure 2 with
an asy1-type distribution of the scattering centres but with a wider barrier width, 7 nm,
and with a smaller gap energy, 0.41 meV. The numbers assigned to each peak denoteN1D

in units of 105 cm−1. The enhancement tends to increase with increasingN1D, because
the upper gap edge sweeps throughµ at a higherB where the separation of the wave
functions inside the gap becomes more severe. However, this argument is only qualitative
because other factors such as the velocity and the DOS affect the quantitative results. The
enhancement can disappear if the gap is smeared by damping. Inside the gap, damping
arises mainly from the forward scattering and is smaller than that outside the gap. The inset
in figure 3 showsG(0) as a function of the carrier density. In the above discussions, we
have implicitly assumed that the wire is longer than the mean free path (∼g), namely that
the maximum ofG(B) is smaller than the maximum conductanceGmax. The latter is given
by Gmax = 2e2/h inside the gap [10] and corresponds tog = L in (4).

We have ignored a small forward-scattering contribution to the momentum relaxation.
The latter arises from thek′-integration near the Fermi pointsk′ ∼ k = k1−, k2+ in the
second term of (3) and vanishes for delta-function energy conservation. The effect of level
broadening is estimated by replacing the delta function by a Lorentzian function with a
width w. The magnitude of this term is then estimated by inserting the zeroth-ordergk′ and
approximatingεk′ = h̄2(k′ ± 1k/2)2/2m∗ neark′ = k2+ andk1−, respectively: the ratio of
this contribution to the first term in (3) is roughlyδ = 5 × 10−2ηw/εF , whereεF is the
Fermi energy andη = u2+,2+/u1−,2+ is of the order of the in-gap enhancement. Therefore,
the results in (5)–(7) and figures 2 and 3 are valid for narrow level widthsw (i.e., δ � 1).

At high T (kBT � 1SAS), the in-gap enhancement is reduced approximately by a factor
1SAS/kBT due to thermal excitation of the electrons to the low-conductance regions above
the gap. A significant reduction of the enhancement can also arise from the lattice scattering
of the electrons [3, 5] at highT . On the other hand, whenµ is below the gap (e.g., at 6 T
in figure 1), the carriers are activated into the gap, yielding enhanced conductance.

The low-T enhancement effect discussed in this letter is not restricted to short-range
impurity scattering but is applicable to a general class of scattering such as long-range
Coulomb or electron–phonon scattering, because the enhancement mechanism relies mainly
on the small overlap of the confinement functions of the two QWs involved in the back
scattering inside the gap. More detailed results will be presented elsewhere.

In summary, we have proposed that the low-T mobility of coupled thin DQWWs can
be enhanced by orders of magnitude by an appliedB of a few tesla. This enhancement is
caused by the quenching of intrawire back scattering which occurs whenµ falls within the
partial energy gap created byB-induced anticrossing of the energy dispersion curves of two
quantum wells.

The author thanks J A Simmons for a careful reading of the manuscript and valuable
discussions. This work was supported by US DOE contract No DE-AC04-94AL85000.
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